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Asian Soybean Rust (ASR) is a serious disease for soybean
production worldwide, particularly in South America. The biotic
stress is caused by the biotrophic fungus Phakopsora pachyrhizi.
The potential to reduce soybean yield is large and calculated to
be approximately 33.20+5.90% across Brazillian crop regions
(calculations were done using data from trials of the Brazilian
network for ASR chemical control for the last five crop seasons
1.

In spite of several control strategies being released over the
years, none of them appeared to be highly effective at a
reasonable cost. Hence, new approaches must be investigated
to improve the arsenal used to deal with ASR. Therefore, we
studied the genetic tolerance, which is the ability of a given
genotype to sustain yield or quality in the presence of a stress
agent (Fig. 1). As we go further in our discussion, readers will
be able to see the differences underling the dynamic and static
tolerance, both conceptually (Fig. 2) and through results (see
R&D session).
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Fig. | Overview of host tolerance and
resistance measurement [2]. Tolerance
is the slope of the curve of host health

Fig. 2 A graphical depiction of the
reaction norm showing the differ-
ence between static and dynamic

over pathogen load. tolerance.
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Sixteen soybean elite lines were tested in eight RCBD trials
with three replicates carried out across three crop seasons and
two locations, yielding 384 plots. Each combination of location x
year was considered a unique environment. Two identical and
adjacent trials were carried out within each environment,
contrasting only for the ASR occurrence (Fig. 3).

Fig. 3 Side-by-side identical
RCBD trials contrasting only for
ASR occurrence. This condition
was achieved by applying different
sets of fungicides.

We evaluated a series of agronomic traits and seed shape
and size parameters through high-throughput phenotyping (Fig.
4) to measure the impact of ASR on soybean elite lines.

Fig. 4 High-throughput phenotyping strate-
gy of seed shape and size parameters based
on RGE imagery. 384 100-seeds samples
were photographed and the images were an-
alyzed via SmartGrain [3].

A mixed model was fitted using an unstructured
variance/covariance  formulation for genotype  within
environment effects (the G matrix) and heterogeneous error
variances across environments for residuals effect (the R
matrix) and block within environment (model 1).

y=pl+Xs+Zisr+Zgs+e [model 1]
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The stress tolerance index (STI) was used to assess the
tolerance of each genotype according to the following
eXpression: ST = Y, x Yys/V,

Stressed Non-stressed

The statistical analyses were performed using ASReml
version 4.0 [4] and RStudio [5].
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There were no significant cross-over interac-
tions (Fig. 5 and 9). The opposite scenario could
imply the existence of overcompensation [6].The
inbreds g30, g32, g23, g29, and g35 displayed the
static type of tolerance whereas the remaining
genotypes revealed responsiveness to environ-
ment enhancement.
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Fig. 6 Funnel plot for Area Under the Disease Progress
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Fig. 5 Caterpillar plot revealing the differential performance of 16

soybean genotypes exposed to contrasting rust stress. Each point

depicted in the graph is a BLUP (Best Linear Unbiased Predicror)

compurted fitting model 1.
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Rust symptoms were observed on the leaves
of all genotypes. Inbreds g24 (USP 04-17027) and
g36 (USP 231-2222-12) yielded as much seed
mass per unit of area as the average performance
of all 16 genotypes in the stress-free environ-
ment (Fig. 5).
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Fig. 10 Predicted general combining ability (GCA) effect of each
parent plus standard error.

Fig. 8 Rust symptoms

Fig. 7 Caterpillar plot for seed yield
stress tolerance index.
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Fig. 9.1 Carerpillar plot for 100-seeds
weight stress tolerance index.

lem faced by farms. However,
this study indicates the possi-
bility to reach high seed yield
without spending resources

under high pathogen burden
should be investigated on its
molecular bases in future
studies.
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